Cheiron School 2010

Protein Crystallography

Macromolecular crystallography (MX)

SPring-8 / JASRI Structural Biology Group Takashi Kumasaka

Contents

- 1: Introduction to MX
- 2: Methodology of MX
 - -2.1: Crystallization
 - 2.2: Data collection
 - -2.3: Phasing
- 3: Recent advances in MX methods
 - 3.1: Microbeam & Radiation damage

1: Introduction to MX

Structural study of Ribosome

Ribosome ...

plays a factory to produce protein from genetic information

Central Dogma DNA -> RNA -> Protein

A major target of antibiotic drug

To reveal function from structure

Prof. Ada Yonath 2009 Nobel Prize

It is considered that ribosome is *difficult to be crystallized* because of its huge size. Prof. Yonath started its trial from 1980's when the other prize winners (Profs Steitz and Ramakrishnan) did not undertake it.

> Structures determined at 2000.

Used synchrotron ESRF ID2, ID14-2, -4, ID29 APS 19-ID CHESS F1 DESY BW6 & BW7B PF BL6A... and many others

Crystal structure and synchrotron

Number of determined structures

Asian contribution

Nowadays, most structures are determined using SOR.

Determination of important and complex structures

3G SOR went into this field from 2000, and accelerates large molecule analysis.

Biologically important proteins including membrane proteins:

Calcium pump, Rhodopsin, Bacterial flagella, Drug effilux protein and so forth.

Application to drug discovery

Enzyme

Reaction selectivity < Key and keyhole

Marked results

Relenza (Influenza)

Indinavir (AIDS)

Only works a key (chemicals) can entry into the keyhole (enzyme)

Drug Design: Chemicals recognize and bind to protein structure to regulate protein function.

- •National interests and drug discovery.
- •Keen competition in drug development.

•Importance structural analyses of drug-target proteins

History of development in MX

Advances in Protein Crystallography by Synchrotron Radiation

Synchrotron data collection

> effective to not only X-ray measurement but also all other exp. steps

in scale down / time reduction / high resolution.

2: Methodology of MX 2.1: Protein crystallization

http://www.cir.tohoku.ac.jp/sazaki-p/%20Web_pages/Protein_crystallization.html

Hydration and packing

<u>Dissolution</u>: <u>Condensation</u>: Protein-water interaction → Protein-protein interaction Water-water interaction Dehydration

Nakasako, M. Philos. Trans. R. Soc. Lond. B 359, 1191-204 (2004)

Factors determining protein solubility

Protein aggregation

Electrostatic interaction ~ oriented/ordered interaction Hydrophobic interaction ~ random aggregation

•Kosmotropic ions: multivalent anion etc.

Hofmeister series: Salting-out effect

Stabilizing and enhancing water-water network

> Aggregate hydrophobic patches in proteins

•Organic solvent / uncharged polymer: acetone, DMSO, PEG etc.

Lower permittivity > Coulomb repulsion > aggregation

excluded volume effect in polymer > aggregation by osmotic pressure

Detergents

Hydrophilization of protein hydrophobic regions > solubility 1

• Chaotropic ions: larger ionic radii monovalent anion etc.

Guanidium ion, Urea, Iodine etc

Destroy water cluster > enhance solvent entropy

Amino acids / polyamine

Direct interaction with protein > Reduce protein-protein interaction

•pH Shift the surface charge in protein > modulate electrostatic interaction

Phase Diagram

http://www.cir.tohoku.ac.jp/sazaki-p/%20Web_pages/Protein_crystallization.html

Seeding technique

Optimizing crystal seed formation

Macro Seeding / Micro Seeding / Streak Seeding / Heteroseeding

Type of crystal growth

http://www.cir.tohoku.ac.jp/sazaki-p/%20Web_pages/Protein_crystallization.html

Crystallization method

Use the equilibrium against concentration gradient.

• Hanging drop vapor diffusion

- Sitting drop vapor diffusion
- Dialysis method: liquid-liquid contact via semipermeable membranes.
- Batch method: Simply mixing protein solution and precipitant.

Screening of crystallization condition

1. Initial Screening

Sparse Matrix Method Screening kits available commercially incl. 48~50 conditions

2. Optimization

Fine tuning solution parameters: Conc., pH, additives...

	1	2	3	4	5	6	
Α	A.S. 1.0M	A.S. 1.1M	A.S. 1.2M	A.S. 1.3M	A.S. 1.4M	A.S. 1.5M	pH 7.0
в	A.S. 1.0M	A.S. 1.1M	A.S. 1.2M	A.S. 1.3M	A.S. 1.4M	A.S. 1.5M	pH 8.0
С	PEG 10 %	PEG 11 %	PEG 12 %	PEG 13 %	PEG 14 %	PEG 15 %	pH 7.0
D	PEG 10 %	PEG 11 %	PEG 12 %	PEG 13 %	PEG 14 %	PEG 15 %	pH 8.0

3. Heterogeneity check of sample solution

Impurity:Electrophoresis, Analytical HPLCInstability:Enzymatic assay, Mass spectrometryOligomeric assembly:DLS (dynamic light scattering)

From precipitants to crystals

Crystallization robot

自動結晶化観察ロボットシステム「TERA」 RIKEN

RIKEN SPring-8

^{結晶の顕微鏡写真} Microscopic image

結晶化ウェル自動観察装置 Automated monitoring system

Tabletop dispenser robot(Thermo Scientific Hydra)

2.2: Data Collection

Crystal systems and space groups

7 systems & 230 space group

Triclinic: P1. $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$ Monoclinic: P2, P2₁, C2. $a \neq b \neq c$, $\alpha = \beta = 90$, $\gamma \neq 90^{\circ}$ Orthorhombic: P222, P2₁2₁2₁, F222. $a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$ Trigonal: P3, P3₁, P3₁21. $a = b \neq c$, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$ Hexagonal: P6, P6₁, P6₁22. $a = b \neq c$, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$ Tetragonal: P4, P4₁, P4₁2₁2, I4₁22. $a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$ Cubic: P43, F432, P4₁3₁2, I432. a = b = c, $\alpha = \beta = \gamma = 90^{\circ}$

65 Enantiomorphic space groups (which do not have a center of symmetry due to the absence of inversions, mirrors, and glide plane elements) out of 230 all space groups, because protein molecules do not have such symmetry.

Bravais lattice and Laue group

Relationship between real and reciprocal spaces

*P*2 (2-fold axis along y-axis through origin) > $\rho(x,y,z)=\rho(-x,y,-z)$

$$\mathbf{F}(hkl) = V \int_{\text{Cell}} \rho(xyz) \exp[2\pi i(hx + ky + lz)]$$

= $V \int_{\text{Half-Cell}} \rho(xyz) \{ \exp[2\pi i(hx + ky + lz)] + \exp[2\pi i(-hx + ky - lz)] \}$
= $\mathbf{F}(\bar{h}k\bar{l})$

Other rules:

 Screw axis shows same symmetry of its rotation with systematic absences
P2₁, F(hkl) = F(-h,k,-l), F(0,k,0) = 0 (k=2n)

2) Complex lattice...

ex) C-base centered, F = 0 (h+k = Odd)

```
1 = 4
```


An example of reciprocal lattice

PDB ID: 1HF4 Egg white lysozyme Space group: P2₁ Lattice constant: *a* = 27.94 b = 62.73c = 60.25 $\alpha = 90.0$ $\beta = 90.76$ $\gamma = 90.0$

	ЪО	
	a design of the second s	
	· · · · · · · · · · · · · · · · · · ·	
1		

•	in the second second second second	
Γ		
-		

Asymmetric unit in reciprocal space

X-ray diffraction data collection

Essentials in high quality data collection:

Incident X-ray: Intensity, Divergence, Wavelength

Detector: Detection accuracy, Speed, Image resolution

Crystal: Crystalline order, Size, Radiation resistance

Experimental setup

Oscillation method

To record all individual reciprocal spots, the crystal is rotated with a step-width around one axis. The step-width images are processed to obtain a data set.

When a reciprocal points across the Ewald sphere, its intensity profile is recorded on detector.

A series of images

Parameters in oscillation method

Diffraction image processing

Obtain index (hkl) and intensity (*I*) of each diffraction spot In collected from single wavelength & single crystal

Software MOSFLM, XDS (free software) HKL2000, CrystalClear

Steps of image processing

Indexing:Determine parameters incl. lattice const.Integration:Calculating peak intensityScaling:Merging & averaging equivalent reflections

Spot Finding

Find spots and calculate and record its coordinates on detector.

Autoindexing

Using spot positions, deduce possible crystal system and lattice parameters.

Choose a	solution:										
Soln	Least Sq	Spacegrp	Bravais	Lattice	a	b	с	Volume	α	β	γ
7	0.23	75	tetrago	P	77.02	77.02	37.44	222091	90.00	90.00	90.00
Э	0.20	21	orthorh	С	108.87	108.97	37.44	444181	90.00	90.00	90.00
1	0.23	16	orthorh	Р	37.44	77.01	77.03	222090	90.00	90.00	90.00
12	0.04	5	monocli	С	108.87	108.97	37.44	444181	90.00	90.00	90.00
13	0.12	3	monocli	Р	37.44	77.01	77.03	222090	90.00	90.13	90.00
3b	0.17	3	monocli	P	37.44	77.01	77.03	222090	90.00	90.13	90.00
14	0.00	1	triclin	P	37.44	77.01	77.03	222090	89.95	89.87	89.90
	1	La	attice ty	/pe			Lat	tice coi	nstar	nt	

Agreement between observed and calculated spot position

Refinement

Various parameters are optimized using spot positions

Orystar -										
	ব্য	All crystal All cell	🔽 Constra	ain unit cell	according	to symmetry	☐ Gor	niometer ori	entation	
		All lengths		🔽 All	langles		🖂 🖂	rotations		
	a	되	√	Σ α	Π β	N	Rot1	I⊽ Rot2	I⊽ Rot3	ア Mosaicity
Start	77.02	77.02	37.44	90.00	90.00	90.00	-52.7353	-57.4633	-45.7115	0.11
Last	77.02	77.02	37.44	90.00	90.00	90.00	-52.7353	-57.4633	-45.7115	0.11
Δ	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Result	77.0087	77.0087	37.4263	90.0000	90.0000	90.0000	-52.7466	-57.4508	-45.7226	0.1115
σ	0.0341	0.0341	0.0269	0.0000	0.0000	0.0000	0.0335	0.0203	0.0359	0.1000
172	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Δ/σ	The second		- A CONTRACTOR - C	a second a second second		and the second se	Construction of the second	Contraction of the second second		a second second
Δ / σ Detector							Source			
Δ / σ Detector	<u>य</u>	All detector All translatio	ons	, 4 ସ	, All rotations		Source		<u></u>	, All rotations
Δ / σ	Trans>	All detector All translatio IV (TransY	ons ⊽ TransZ/ Dist	, 문 RotZ	, All rotations I⊽ RotX∕ Swing	RotY	Source	, Wavelengtl	고 고 Rot1	All rotations
Detector	بر الم Trans> 0.5160	All detector All translatio (TransY -0.0387	ons TransZ/ Dist [155.2467	, 다 RotZ 0.0009	All rotations	RotY	Source	Wavelengtl	되 Rot1 -0.0001	All rotations
Detector Start Last	Trans>	All detector All translatio (TransY -0.0387	ons TransZ/ Dist 155.2467	, 모 RotZ 0.0009	All rotations RotX/ Swing -0.0121	RotY 0.1902	Source Start Last	Wavelengtl	D Rot1	All rotations Rot2 0.0001
Δ / σ Detector Start Last Δ	I Trans> 0.5160 0.0000	All detector All translatio (TransY -0.0387 -0.0387 0.0000	ons TransZ/ Dist 155.2467 155.2467 0.0000	, F RotZ 0.0009 0.0000	All rotations RotX/ Swing -0.0121 -0.0121 0.0000	RotY 0.1902 0.1902 0.0000	Source Start Last	Wavelengtl 0.70850 0.70850 fixed	n Rot1 -0.0001 -0.0001 -0.0000	All rotations Rot2 0.0001 0.0001
Δ / σ Detector Start Last Δ Result	0.5160 0.5160 0.5272	All detector All translatio (TransY -0.0387 -0.0387 0.0000 -0.0232	ons TransZ/ Dist 155.2467 155.2467 0.0000 155.3774	, RotZ 0.0009 0.0000 0.0000 −0.0284	All rotations RotX/ Swing -0.0121 -0.0121 0.0000 -0.0075	RotY 0.1902 0.1902 0.0000 0.1891	Source Start Last Δ Result	Wavelengtl 0.70850 0.70850 fixed 0.7085	Rot1 -0.0001 -0.0000 -0.0054	All rotations Rot2 0.0001 0.0000 -0.0026
Δ / σ Detector Last Δ Result σ	0.5160 0.5160 0.5272 0.0249	All detector All translatio (TransY -0.0387 -0.0387 0.0000 -0.0232 0.0253	ons TransZ/ Dist 155.2467 155.2467 0.0000 155.3774 0.0573	P A RotZ 0.0009 0.0009 0.0000 −0.0284 0.0174	All rotations RotX/ Swing -0.0121 -0.0121 0.0000 -0.0075 0.0878	RotY 0.1902 0.1902 0.0000 0.1891 0.1002	Source Start Last Δ Result	Wavelengtl 0.70850 0.70850 fixed 0.7085 fixed	Rot1 -0.0001 -0.0000 -0.0000 -0.0054 0.0152	All rotations Rot2 0.0001 0.0000 0.0000 -0.0026 0.0112

Refinement

and the second se
cepted 1618
cluded 16
Cycles 100
25
Rot. (deg)

Integration

Integrate diffraction spot profile.

Steps of integration:

- 1. Estimate correct spot positions
- 2. Background estimation
- 3. Fit and integrate by averaged reflection profile
Scaling

Equivalent intensity among symmetrically equivalent reflections

ex. $P2_1$; (x, y, z), $(\overline{x}, y+1/2, \overline{z})$ $I(h \ k \ l) = I(\overline{h} \ k \ \overline{l})$ $I(\overline{h} \ \overline{k} \ \overline{l}) = I(h \ \overline{k} \ l)$

Estimate scale and falloff factor in each plate

Variation of incident intensity, absorption by crystal, etc.

during one data set

Rmerge overall:

Measures the agreement of symmetry related observations of a reflection. Rmerge in the last shell:

Rmerge in the highest resolution shell.

I/sigma:

A measure of the signal to noise ratio.

Theory of error ~ Signal-Noise Ratio; S/N

Signal: Diffraction intensity ~ Dose dependent

Noise: Radiation damage ~ Dose dependent Scattering noise ~ Dose dependent Detector dark noise ~ Time dependent Detector readout noise ~ Image number dependent

2D detectors for MX

	CMOS	CCD		Amorphous	Silicon	ID	
	CIMOS	Indirect	Direct	Selenium	Pixel		
Area size (100-400mm)) Multi-element	O ME+FOT	\bigtriangleup cm sq. order) by processing tech.	⊖ ME	Ø	
Resolution (50-100µm)	© Few-200 μm Phosphor	 10 - 100 μm FOT&phosphor	© Few μm	Ο 100~200 μm	∠ ~200 μm	Ο 50 μm~	
Readout Speed	⊚ Sub mSec Continuous readout	⊖ Sec) Sec	© Real time Counting	$\stackrel{ riangle}{\operatorname{Min}}$	
Sensitivity	$\bigtriangleup \sim \bigcirc$ Phosphor & Window	$\bigtriangleup \sim \bigcirc$ Phosphor		\bigtriangleup	$\bigtriangleup \sim \bigcirc$ Low for high E photon	O	
Noise	△~○ Relatively high readout & dark noise	Successful Cooling Phosphor/FOT/Window		△ Higher noise by polycrystalline	© Counting (counting loss at high dose)	△ Stray light of laser / Loss of fluorescence Capture	
Skew		△ FOT) Direct) Direct) Direct	○~© Geometry at readout	
Dynamic range	△ ~12bit	○ ~16 bit			$\bigcirc \\ \infty \text{ (Counting)}$	© ~20 bit	
Cost	© Versatile Processing technology	$\triangle \sim \bigcirc$ Complex system	© Cheap but small	? Expecting Future development	△ Original tech. and monopolistic	© Simple and matured technology	

Imaging plate

Plastic X-ray sensitive film Photostimulated luminescence by BaFBr:Eu²⁺

CCD Detector

CCD detector system

Area Detector Systems Co. http://www.adsc-xray.com

Rotate with a constant speed

Hasegawa (JASRI) & Yamamoto (RIKEN) Hamamatsu Photonics

Read out images with a constant frame rate

	Higl	h through	ghput	and/or	Fine	slice	data	collection
--	------	-----------	-------	--------	------	-------	------	------------

Specification	Hamamatsu C10158DK	ADSC Q210
Scintillator	CsI:TI	Gd ₂ O ₂ S:Tb
Pixel size [mm ²]	50 x 50	51 x 51
Detector area [mm ²]	118.8 x 118.8	210 x 210
Output data [bits]	14	16
Dynamic range	6,000	14,100
Dead time due to readout	14 msec / pixel	1.1 sec / frame

Cryocrystallographic technique

Prevent thermal degradation of sample diffusion and reaction of free radicals at cryogenic temperature (30 - 100 K) using cold N₂/He gas stream

Sample Mount Pin & Cryoloop

Diffraction power of crystal

Darwin's Formula

$$E(\mathbf{h}) = \frac{I_0}{\omega} \lambda^3 \frac{e^4}{m^2 c^4} \frac{P \cdot L \cdot A \cdot V_x}{V^2} \cdot |F(\mathbf{h})|^2 \cdots$$

 I_0 : Incident intensity, ω : Angular velocity of crystal rotation, λ : Wavelength,

- *e*: Charge of electron, P: Polarization factor (= $(1+\cos^2 2\theta)/2$),
- *L*: Lotentz factor (= $1/\sin\theta$ when spindle x-ray),
- A: Absorption coefficient, V_x: Crystal volume, V: Lattice volume

In case of protein crystal...

- High solvent contents (25 ~ 75%)
- Large unit cell
- > Weak diffraction power ~ Low resolution

Crystal packing ~ molecular vibration ~ resolution

Relationship with B-factor (DWF)

Vibration in solution > Movie

Packing density V_M : $V_M = V_{cell} / Mw_{cell}$ High density (small V_M) > High Rigidity (Kantardjieff & Rupp, 2003)

Packing control by humidity control

- FMS (Free Mounting System)
- > lower humidity around crystal
- > dehydration
- > induce phase transition

(Kiefersauer et al., 2000)

Resolution and incident intensity

Reduction by radiation damage

Reflection overlaps

Longer lattice constant gives narrower spacing of adjacent reflections.

Long axis should be placed along rotation axis.

Mosaic spread

Spot sharpness depends on crystalline order.

Radiation damage

Bacterial flagelin F41 Crystal @ SPring-8 BL41XU

 1st frame
 15min.
 25min.

Total Flux at Sample = 10¹³ photons/sec/mm²

F.A. Samatey, K.Imada, S.Nagashima, K.Namba (ERATO)

Interaction between photon and protein

Primary Effect

- Absorbed photon energy > Temperature increment
- Photoelectron formation
- > Chemical reduction / Reactive radical formation

X-ray dosedependentTemperature / Timeindependent

Secondary Effect

Chemical reaction by free radicals

X-ray dose, temperature / time dependent

Radiation induced temperature increment under cryogenic condition

Kuzay et al. Acta Cryst. (2001). D57, 69-81

Radiation induced formation of reactive radicals (1)

Water

H ₂ O	\xrightarrow{hv} H ₂ O + + e ⁻
$H_2O^+ + H_2O$	\longrightarrow H ⁺ + OH $^{\bullet}$
e^- + H_2O	\longrightarrow H ₂ O ⁻
$H_2O^- + H_2O$	\longrightarrow H • + OH ⁻
H ₂ O	\xrightarrow{hv} \underline{H}^{\bullet} + \underline{OH}^{\bullet}

Radiation induced formation of reactive radicals (2)

Disulfide bridge

 $\stackrel{hv}{\longrightarrow} (p)-CH_2SS^{\bullet+}CH_2-(p) + e^{-1}$ (p)- CH_2SSCH_2 -(p) $(p)-CH_2SSCH_2-(p) + \underline{OH}^{\bullet} \longrightarrow (p)-CH_2SS^{\bullet}+CH_2-(p) + OH^{\bullet}$ $(p)-CH_2SS^{\bullet}+CH_2-(p)+OH^{-} \longrightarrow (p)-CH_2SOH+(p)-CH_2S^{\bullet}$ $(p)-CH_2SSCH_2-(p) + OH^{\bullet} \longrightarrow (p)-CH_2SOH + (p)-CH_2S^{\bullet}$ Cysteine $(p)-CH_2SH + e^{-}$ \longrightarrow (p)-CH₂[•] + SH⁻ $(p)-CH_2SH + \underline{H}^{\bullet}$ \longrightarrow (p)-CH[•]₂ + H₂S

Burmeister, Acta Cryst. (2000). D56, 328-341

Radiation induced formation of reactive radicals (3)

Aspartate & Glutamate

(p)-CH ₂ CH ₂ COO ⁻	$\xrightarrow{\text{nv}}$	(p)-CH ₂ C• + H ₂ COO + e^{-}
$(p)-CH_2C^{\bullet} + H_2COO^{-}$	\longrightarrow	$(p)-CH_2CH_2^{\bullet}+CO_2$
Tyrosine		

1

 $\stackrel{hv}{\longrightarrow} (p)-CH_2C_6H_4OH^{\bullet} + e^{-1}$ $(p)-CH_2C_6H_4OH$ (p)- $CH_2C_6H_4OH^{\bullet}$ + \longrightarrow (p) -CH₂C₆H₄O[•] + H⁺

Methionine

(p)-CH₂CH₂SCH₃ + $2\underline{H}^{\bullet}$ (p)-CH₂CH₃ + CH₃SH

Burmeister, Acta Cryst. (2000). D56, 328-341

Dose limit

Estimated dose limit for ionizing radiation

Estimation of radiation damage

Sample	Hen egg white lysozyme
Space group	<i>P</i> 4 ₃ 2 ₁ 2
Lattice	<i>a=b=</i> 78.54 , <i>c=</i> 37.77Å
	$\alpha = \beta = \gamma = 90^{\circ}$

BL	SR (SPring-8-BL45XU)		
Data set	11 (1~11)	1(12)	
image/set	95	245	
Wavelength	1.02 Å	1.02 Å	
Oscillation angle	1.0°	1.0°	
Camera distance	150mm	220mm	
Exposure	5秒	60秒	
Detector	Jupiter210 (CCD)	RAXIS-V(IP)	

Variation of I/ σ_{I} and R_{merge}

Variation of lattice constants

Radiation damage in real space

electron density at 1.6 Å resolution

Data set

2.2: Phasing

Crystallographic phase problem

Diffraction intensity is only measureable, but its phase information is completely lost.

 $I(hkl) = \mathbf{F}(hkl) \mathbf{F}^*(hkl)$

 $\mathbf{F}(hkl) = |\mathbf{F}(hkl)| \exp i\alpha$

Solving methods

- 1. Direct method
- 2. Isomorphous replacement (IR)
- 3. Molecular replacement (MR)

|F| of (a)

 $|\mathsf{F}|$ of (b) α of (a)

random |F α of (b)

Harker Diagram ~ Structure factor and phase

Isomorphous replacement

Patterson function

Directly calculated from intensity without phase. The function shows self correlation of electron density.

In case of few atoms in cell, their coordinates are determined from Patterson function.

Characteristics of Patterson function

- 1. Even function: $P(\mathbf{u}) = P(-\mathbf{u})$
- 2. Screw axis in real space > Rotation axis
- 3. Harker line / Harker section $P2_1$: (*x*, *y*, *z*), (-*x*, *y*+1/2, -*z*) (*u*, *v*, *w*) = (-2*x*, 1/2, -2*z*)
- 4. Correspond to mathematical convolution

$$f(t) * g(t) = \int_0^t f(t-\tau)g(\tau)d\tau$$

f(t)*f(t): Self correlation f(t)*g(t): Cross corr.

Harker Section

Patterson Peaks p(u,v,w)

2-1:
$$\frac{1}{2}$$
-2x, -2y, $\frac{1}{2}$
3-1: $\frac{1}{2}$, $\frac{1}{2}$ -2y, -2z
4-1: -2x, $\frac{1}{2}$, $\frac{1}{2}$ -2z
3-2: 2x, $\frac{1}{2}$, $-2z$ - $\frac{1}{2}$
2-4: $\frac{1}{2}$, $-\frac{1}{2}$ -2y, 2z
4-3: $-\frac{1}{2}$ -2x, -2y, $\frac{1}{2}$

2-1: $\frac{1}{2}$ -2x, 2y, $\frac{1}{2}$ 3-1: $\frac{1}{2}$, $\frac{1}{2}$ -2y, 2z 4-1: 2x, $\frac{1}{2}$, $\frac{1}{2}$ -2z 3-2: 2x, $\frac{1}{2}$, $\frac{1}{2}$ +2z 2-4: $\frac{1}{2}$, $\frac{1}{2}$ +2y, 2z 4-3: $\frac{1}{2}$ +2x, 2y, $\frac{1}{2}$

Relationship among Harker peaks

1: (x, y, z)Patterson space (u, v, w)2: $(\frac{1}{2}-x, -y, \frac{1}{2}+z)$ 3-1 $(\frac{1}{2}, \frac{1}{2}-2y, -2z)$ 2-4 $(\frac{1}{2}, -\frac{1}{2}-2y, 2z)$ 3: $(\frac{1}{2}+x, \frac{1}{2}-y, -z)$ 4-1 $(-2x, \frac{1}{2}, \frac{1}{2}-2z)$ 3-2 $(2x, \frac{1}{2}, -\frac{1}{2}-2z)$ 4: $(-x, \frac{1}{2}+y, \frac{1}{2}-z)$ 2-1 $(\frac{1}{2}-2x, -2y, \frac{1}{2})$ 4-3 $(-\frac{1}{2}-2x, 2y, \frac{1}{2})$
Anomalous Phasing

Anomalous Effect

Smaller than usual heavy atom effects ↓ Need high quality data

2 Wavelength MAD

SAD

|F|: Native | F_{λ} (**h**+) |: Anomalous | F_{λ} (**h**-) |: Anomalous

Phase probability function shows bimodal.

>> Phase improvement by density modification

>> High precision data collection

Overview of Beamline BL45XU

Trichromatic concept for optimizing MAD-experiment

- Tandem vertical undulator (for High Quality Beam)
- Trichromator (for Rapid Data Collection)

(Yamamoto, Kumasaka, Fujisawa, Ueki, 1996)

Trichromatic Concept for MAD-experiment

Three-wavelengths data will be taken simultaneously for the identical protein crystal without changing the setting by "Trichromator".

Bacterial Chitosanase (Mw 34k, 7 SeMet)

Source: Gram-Negative Bacterium (*Matsuebacter chitosanotabidus* 3001) Function: Hydrolysis of glycosidic bonds of chitosan (OGlcN-GlcN, GlcN-GlcNAc, GlcNAc-GlcN, ×GlcNAc-GlcNAc)

 $P2_12_12_1$ a = 51.5, b = 56.2, c = 206.8 Å1.7 Å Resolution Two monomers / Asym. unit

Data Collection Statistics

Data		Observations	Individuals	//σ	$R_{ m merge}$	$R_{ m iso}$	В
Cho1: F	Remote	260,402	65,579	18.5	0.049	—	
F	Peak	269,821	66,482	17.4	0.053	0.057	0.08
E	Edge	269,362	66,428	17.5	0.084	0.048	0.11
Cho2: F	Remote	261,577	65,695	19.8	0.045	—	—
F	Peak	263,567	66,480	18.7	0.048	0.064	0.09
E	Edge	263,387	66,449	17.1	0.076	0.078	-0.39

Cho1 (Trichromatic) Cho2 (Conventional)

Variation of Fall-off factor

Comparison with dispersive Patterson maps

Harker section ($w = \frac{1}{2}$)

Phasing Statistics (20 - 1.7 Å)

Data		Cho1			Cho2	
	Remote	Peak	Edge	Remote	Peak	Edge
R _{Cullis} (iso) [#]		0.82 / 0.84	0.83 / 0.88		0.78 / 0.83	0.76 / 0.86
R _{Cullis} (ano)	0.94	0.91	0.99	0.94	0.91	0.99
Lack of closure (iso) [#]		8.9 / 14.0	8.1 / 12.5		11.4 / 14.7	10.3 / 16.8
Lack of closure (ano)	8.98	16.56	7.32	8.11	15.91	6.37
Figure of merit	0.6057			0.6167		
Phasing power#		1.22 / 0.81	1.19 / 0.82		1.40 / 0.90	1.38 / 0.89
< <u>\</u> >*	44.2	(33.9)		47.8	(39.4)	

#: Acentric and centric values before and after slash.

*: Phase difference against phases calculated from refined model Parenthesis show the values within the range of 10-2.5 Å.

Phase difference against true phase

Quality of electron density map

Cho1 (Trichromatic)

Cho2 (Conventional)

Tyr 165 (Chitosanase A-chain) 1.7 Å MAD phase (without any phase modification)

Molecular replacement

Known determined structure

Unknown but probably similar structure

The known structure will be selected by sequence similarity. Highest sequence similarity might gives highest structural similarity.

How to pack the molecules into the cell? > 6-D search

Patterson function Intramolecular Intermolecular vectors

Euler angles, $\alpha \; \beta \; \gamma$

Rotation axis:
$$z''$$
 x' z $\begin{pmatrix} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ \sin \alpha & \cos \alpha & 0 \\ 0 & \sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$ Order 0 0 1 0 0 1 0 $\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$ 0 0 1 0 $\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 1 1 1

An example of rotation function

α	β	r	x	У	z	Correlation Coefficient	R-factor
30.37	54.61	351.97	0.000	0.000	0.000	16.0	48.9
59.63	125.39	171.97	0.000	0.000	0.000	16.0	48.9
27.57	41.41	20.51	0.000	0.000	0.000	9.2	51.1
62.43	138.59	200.51	0.000	0.000	0.000	9.2	51.1
17.43	98.67	334.32	0.000	0.000	0.000	7.2	51.7
72.57	81.33	154.32	0.000	0.000	0.000	7.2	51.7
41.73	139.11	197.95	0.000	0.000	0.000	7.7	52.1
48.27	40.89	17.95	0.000	0.000	0.000	7.7	52.1
81.84	98.18	226.67	0.000	0.000	0.000	8.2	51.6
8.16	81.82	46.67	0.000	0.000	0.000	8.2	51.6

Modeling & refinement of structure

Modeling: Construct molecular model to fit obtained electron density using interactive molecular graphics software or automated modeling software.

Refinement: Optimization of observed and calculated F data by shifting atomic coordinates.

R-factor: Crystallographic Reliability-factor

R1= Σ ||Fo|-|Fc(**r**)||/ Σ |Fo|

 $wR2 = (\Sigma w(|Fo|^2 - |Fc(\mathbf{r})|^2)^2 / \Sigma w(|Fo|^2)^2)^{1/2}$

Cross validation of R-factor (R_{free})

Refinement of structural model

Unrestraint refinement

 Only using R-factor refinement
 in case of ultra-high resolutions (0.8 A or higher)

 Restraint refinement

 Coupled with molecular mechanics
 Model validity is also guaranteed by low energy
 ~ structural stability

Target function

$$E = E_{\text{chem}} + w_{\text{xray}} E_{\text{xray}}$$
$$E_{\text{xray}} = \sum_{\mathbf{h}} |F_{\mathbf{O}}(\mathbf{h}) - kF_{\mathbf{C}}(\mathbf{h})|^{2}$$

Basics of molecular mechanics (MM)

Energy calculation of atomic bonds and interactions by classical mechanics.

3: Recent advances in MX beamlines MX Beamlines at SPring-8

Beamlines and User Accessibility

- 1. Public Beamlines (BL41XU, BL38B1; JASRI) Academic use + Proprietary use (incl. Mail-in service)
- 2. Contract Beamline (BL44XU; Osaka Univ.) Academic use

Contract Beamline (BL24XU; Hyogo Pref.) Academic use + Partially opened to proprietary use

- 3. RIKEN Beamlines (BL26B1&B2, BL32XU; RIKEN) RIKEN's academic research + Partially opened to public use (20%)
- Pharmaceutical Industrial Beamline (BL32B2; PcProt)
 Fully operated for propietary use by the members of Japan Pharmaceutical Manufacturers Association (JPMA)

Synchrotron MX

Brilliant synchrotron radiation facilitates MX research

1. For cutting edge research

High precision data collection for Micro-crystal & Large unit-cell samples

2. For structural genomics approach

Automated and rapid data collection for High throughput screening

Recent topics

Ca²⁺-ATPase pumps ions across the sarcoplasmic reticulum membrane

Chikashi Toyoshima IMCB, The Univ. of Tokyo

A result of long term proposals

Crystals of Ca²⁺-ATPase in various states

Data acquisition tools

Multiple X-ray exposures on one/several crystals to control serious radiation damage during data collection to find better diffracting crystals or crystal segments

•Multiple Centering:

Multiple exposure positions using several crystals in One cryo-loop

-25um

Remote Access Convenient use without visitation

Automation of beamline control

Beamline control software BSS

- Integrated control of beamline optics and diffractometer.
- Automatic set-up of measurement condition.
- Multiple measurements proceed in the scheduled order.

Automation of sample mounting

Sample changer SPACE Mount specimens on goniometer instead of users.

Combination of BSS & SPACE enables automatic data collection with exchanging crystals.

BL Automation

Samples & data management

D-Cha (Database for Crystallography with Home-lab. Arrangement) Crystal information database, Schedule editor, Image browser, etc. on the Internet

SPACE – <u>SPring-8</u> Precise <u>Automatic</u> Cryo-sample <u>Exchanger</u>

(Ueno, Kanda, Ida, Kumasaka, Yamamoto et al.)

New attachment for Hampton/SPINE pins

(Murakami, Ueno, Yamamoto et al., Patent #2009-115652)

Remote access at SPring-8 MX beamlines

Basic concept

Make use of sample changer SPACE, integrated beamline control software *BSS* and beamline database *D-Cha* to make all operations required in MX data collection from remote env.

Characteristic features of remote access at SPring-8

- Spec fulfilling the strict radiation safety regulation in Japan
 - Not use the NX client for secure access to BL inside gateway.
 - Remote client & local server architecture with the original protocol.
 - Authentication gateway and operation restricts units are installed between the client-server to ensure safety of remote access.
- New original protocol developed as a SPring-8 standard For the future use other than MX BL...

Remote access composed of three session (network connection)

- 1. Streaming session
- 2. Device control session <<<
- 3. Result view session

Hasegawa, Ueno, Furukawa et al. (2010)

Streaming session

Device control session

Result view session

Get more structures and details

RIKEN Targeted Proteins beamline BL32XU for Targeted Proteins Research Program (TPRP)

- What is TPRP ?
 - Grant: A national project promoted by MEXT, Japan
 - Aims: To reveal the structure and function of proteins that have great importance in both academic research and industrial application.
 - Research Themes:

Targeted Proteins Research:

Fundamental Biology / Medicine & Pharmacology / Food & Environment Technology Development:

Protein Production / Structural Analysis / Chemical Regulation / Information Platform

- Beamline Construction
 - Kunio Hirata, Masaki Yamamoto et al. (RIKEN)

Development of micro-beam beamline

X-ray crystallography of proteins related to human disease and aging.

Standard **Micro-crystal Current Limit** >50µm 20~30µm <10µm 50µm 50um Oum Target Crystals **Target Beam Size** Current • Beam Size 30×30 **1X1** μm^2 120 • Flux density **10**⁹ >10¹⁰ photons/sec./µm² -1.500 -1.420 -1.340 -1.260 -1.180 -1.100 0.800 nan 0.890

Micro-beam optimized for Micro-crystal

Beam profile of SPring-8 BL41XU

R&D target for Micro-crystallography

Micro-crystal

- Small size crystal (<10mm)
- Weak signal (10⁶copies)

Maximize signal-to-noise ratio

- Generate micro-beam
- Optimize experimental equipments

Generate Micro-beam

- Stabilize micro-beam
- Optimize beam size

Micro-beam

Optimize experimental equipments

- Crystal handling
- High-precision goniometer
- Reduce background noise
- High-sensitive detector

Design concept of BL32XU

- 1. Brilliant source
- 2. Simple components
- 3. Focusing X-rays with large magnification factor
- 4. Changeable beam size at sample position

EEM-mirrors for 1 um focusing

Designed mirror surface shape

Kirkpatrick-Baez Mirror

Mirror shape :	Elliptical
Mirror length :	400 mm
Energy range :	8-20 keV
Mirror material :	SiO ₂
Mirror surface :	Pt-coated
Glancing angle :	3.5mrad

Design of focusing optics

- Virtual light source is TC-Slit (located at 36m upstream of 1st mirror)
- Pt-coated elliptical mirrors with K-B (Kirkpatrick-Baez) configuration
- Magnification factors: 26 in vertical, 40 in horizontal
- Beam divergence at sample position < 2 mrad
- Available X-ray energy range: 8 20 keV, especially high-flux at 12.4 -13.8keV

Glancing angle is designed at 3.5mrad

Achieved beam size(2009/11/27)

Focused photon flux : 6.2x10¹⁰ photons/sec The smallest & highest flux density in the world

Micro-crystal diffractometer

Air-bearing goniometer

•High-precision spindle axis with air-bearing unit

•Hi-speed rotation useful for fast centering, inverse beam geometry etc.

Tentative diffractometer setting

Focusing mirror -> Ion chamber -> Shutter -> Co-axial sample camera -> Collimator -> Back light -> Beam stopper

The first crystal onto the $1\mu m$ beam

The first diffraction image (09/12/04)

Larger beam divergence did not badly affect diffraction profiles

Data collection limit by crystal size

Formula of diffraction power

$$S = (F_{000} / V_{cell})^2 \times \lambda^3 \times V_{cryst}$$

We collect a 2 Å resolution data from 2 um lysozyme crystal.

BL32XU open the new field of Protein micro-crystallography

A recent result of a structure determination

2.6 Å $C222_1$, 1 degree x 90 images, from a single crystal (0.015 x 0.012 x 0.012 mm). 1 μ m beam, 1 sec exposures

Completeness=96.5% (93.9%, 2.69-2.6A)

Apr. 2010

Drs. Sengoku and Bessho (RIKEN)

Extra electron density of a drug candidate.